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1.1. Effective Field theories

Quantum field theories represent the most precise computational tool for describing
physics at the highest energies. One of their characteristic features is that they almost
inevitably involve multiple length scales. When trying to determine the value of an
observable, quantum field theory demands that all possible virtual states and hence all
particles and states be included in the calculation. The different particles have widely
different masses, hence the principal sensitivity of the final prediction to many scales.
This fact represents a formidable challenge from a practical point of view. No realistic
quantum field theories can be solved exactly, so that one has to resort to approximation
schemes; these, however, are typically able to provide a reliable description only for a
single scale at a time.

Effective field theories provide a general theoretical framework to deal with the
multi-scale problems of realistic quantum field theories. This framework acknowledges
that only a single scale at a time can be handled well; simultaneously, however, it provides
an organizational scheme whereby the other scales are not omitted but allowed to play
their role in a separate step of the computation. The philosophy and basic principles
of this approach are very generic, and correspondingly effective field theories represent
the modern method of choice in practically all areas of high-energy physics, from the
low energy scales of atomic and nuclear physics to the high energy scales of (partly yet
unknown) particle physics. Effective field theories can play a role both within analytic
perturbative computations, as well as in the context of non-perturbative numerical
simulations. For some early references on effective field theories, see [1,2,3,4].

One of the simplest applications of effective theories to particle physics is to describe
an underlying theory that is only probed at energy scales E < Λ. Any particle with mass
m > Λ cannot be produced as a real state and therefore only leads to short-distance
virtual effects. Thus, one can construct an effective theory in which the quantum
fluctuations of such heavy particles are “integrated out” from the generating functional
integral for Green functions. This results in a simpler theory containing only those
degrees of freedom that are relevant to the energy scales under consideration. In fact, the
standard model of particle physics itself is an effective theory of some yet unknown, more
fundamental theory.

The development of any effective theory starts by identifying the relevant degrees
of freedom that are relevant to describe the physics at a given length (or energy)
scale, and constructing the Lagrangian describing the interactions among these fields.
Short-distance quantum fluctuations associated with much smaller length scales are
absorbed into the coefficients of the various operators in the effective Lagrangian. These
coefficients are determined in a matching procedure, by requiring that the effective
theory reproduces the matrix elements of the full theory up to power corrections. In
many cases the effective Lagrangian exhibits enhanced symmetries compared with the
fundamental theory, allowing for simple and sometimes striking predictions relating
different observables.
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2 1. Heavy Quark and Soft Collinear Effective Theory

1.2. Heavy-Quark Effective Theory

Heavy-quark systems provide prime examples for applications of the EFT technology,
because the hierarchy mb ≫ ΛQCD provides a natural separation of scales. Physics at the
scale mb is of a short-distance nature, while for heavy-quark systems there is always also
some hadronic physics governed by the confinement scale ΛQCD. Being able to separate
the short-distance and long-distance effects associated with these two scales is crucial for
any quantitative description in heavy-quark physics. For instance, if the long-distance
hadronic matrix elements are obtained from lattice QCD, then it is necessary to
analytically compute the short-distance effects, which come from short-wavelength modes
that do not fit on present-day lattices. In many other instances, the long-distance
hadronic physics can be encoded in a small number of universal parameters. To identify
these parameters requires that one first extracts all short-distance effects.

1.2.1. General idea and derivation of the effective Lagrangian: The simplest
effective theory for heavy-quark systems is the heavy-quark effective theory (HQET) [5](
see [6,7] for a detailed discussion). It provides a simplified description of the soft
interactions of a single heavy quark interacting with soft, light partons. This includes the
interactions that bind the heavy quark with other light partons inside heavy mesons (B,
B∗, . . . ) and baryons (Λb, Σb, . . . ).

A softly interacting heavy quark is nearly on-shell. Its momentum may be decomposed
as p

µ
Q = mQv

µ + kµ, where v is the 4-velocity of the hadron containing the heavy quark,

and the “residual momentum” k ∼ ΛQCD results from the soft interactions of the heavy
quark with its environment. In the limit mQ ≫ ΛQCD, the soft interactions do not
change the 4-velocity of the heavy quark, which is therefore a conserved quantum number
that is often used as a label on the effective heavy-quark fields. The momentum mQ v is
sometimes referred to as a “label momentum”.

A nearly on-shell Dirac spinor has two large and two small components. We define

Q (x) = e−imQv·x [hv (x) +Hv (x)] , (1.1)

where

hv (x) = eimQv·x 1 + /v

2
Q (x) , Hv (x) = eimQv·x 1− /v

2
Q (x) (1.2)

are the large (“upper”) and small (“lower”) components of the Dirac spinor, respectively.
The extraction of the phase factor in Eq. (1.1) implies that the fields hv and Hv carry
the residual momentum k. These fields obey the projection relations /v hv = hv and
/v Hv = −Hv . Inserting these definitions into the Dirac Lagrangian yields

LQ = h̄v i /Dhv + H̄v
(

i /D − 2mQ

)

Hv + h̄v i /DHv + H̄v i /Dhv

= h̄v iv ·Dhv + H̄v
(

−iv ·D − 2mQ

)

Hv + h̄v i~/DHv + H̄v i~/Dhv ,
(1.3)

where i ~Dµ = iDµ − vµ iv ·D is the “spatial” covariant derivative (note that vµ = (1,~0)
in the heavy-hadron rest frame). The interpretation of Eq. (1.3) is that the field hv
describes a massless fermion, while Hv describes a heavy fermion with mass 2mQ. Both
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1. Heavy Quark and Soft Collinear Effective Theory 3

modes are coupled to each other via the last two terms. Soft interactions cannot excite
the heavy fermion, so we integrate it out from the generating functional of the theory.
The light field which remains describes the fluctuations of the heavy quark about its mass
shell. Solving the classical equation of motion for the field Hv yields

Hv =
1

2mQ + iv ·D i~/Dhv =
1

2mQ

∞
∑

n=0

(

− iv ·D
2mQ

)n

i~/Dhv , (1.4)

which implies Hv = O(ΛQCD/mQ) hv provided the residual momenta are small. The
leading-order effective Lagrangian obtained from Eq. (1.3) then reads

LHQET = h̄v iv ·Ds hv +O
(

1/mQ

)

. (1.5)

Note that the covariant derivative iD
µ
s = i∂µ + gsA

µ
s contains only the soft gluon field.

Hard gluons have been integrated out. This is the effective Lagrangian of HQET. From
it one derives the Feynman rules of the effective theory.

It is straightforward to include power corrections to the effective Lagrangian by keeping
higher-order terms in Eq. (1.4). One finds that at subleading order in 1/mQ two new
operators arise, such that

LHQET = h̄v iv ·Ds hv +
1

2mQ

[

h̄v

(

i ~Ds

)2
hv + Cmag (µ)

gs
2
h̄v σµν G

µν
s hv

]

+ . . . . (1.6)

The new operators are referred to as the “kinetic energy” and the “chromo-magnetic
interaction”. The kinetic-energy operator corresponds to the first correction term in
the Taylor expansion of the relativistic energy E = mQ + ~p 2/2mQ + . . ., and Lorentz
invariance ensures that its coefficient is not renormalized. The Wilson coefficient of the
chromo-magnetic interaction operators has been calculated at NLO in RG-improved
perturbation theory [8].

1.2.2. Spin-flavor symmetry and applications in spectroscopy: The leading term
in the HQET Lagrangian exhibits a SU(2nQ) spin-flavor symmetry. Its physical meaning
is that, in the infinite mass limit, the properties of hadronic systems containing a single
heavy quark are insensitive to the spin and flavor of the heavy quark [5,9]. The spin
symmetry results from the fact that there appear no Dirac matrices in the effective
Lagrangian Eq. (1.5), implying that the interactions of the heavy quark with soft gluons
leave its spin unchanged. The flavor symmetry arises since the mass of the heavy quark
does not appear at leading order. When there are Nh heavy quarks moving at the same
velocity, one can simply extend Eq. (1.5) by summing over Nh identical terms for the
effective heavy-quark fields hiv . The result is then clearly invariant under rotations in
flavor space. When combined with the spin symmetry, the symmetry group becomes
promoted to SU(2Nh). The flavor symmetry is broken by the operators arising at order
1/mQ and higher. However, at first order only the chromo-magnetic operator breaks the
spin symmetry.
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4 1. Heavy Quark and Soft Collinear Effective Theory

The spin-flavor symmetry leads to many interesting relations between the properties of
hadrons containing a heavy quark. The most direct consequences concern the spectroscopy
of such states [10]. In the heavy-quark limit, the spin of the heavy quark and the total
angular momentum j of the light degrees of freedom are separately conserved by the
strong interactions. Because of heavy quark symmetry, the dynamics is independent of
the spin and mass of the heavy quark. Hadronic states can thus be classified by the
quantum numbers (flavor, spin, parity, etc.) of the light degrees of freedom. The spin
symmetry predicts that, for fixed j 6= 0, there is a doublet of degenerate states with total
spin J = j ± 1/2. The flavor symmetry relates the properties of states with different
heavy quark flavor.

In the case of the ground-state mesons containing a heavy quark, the light degrees
of freedom have the quantum numbers of an antiquark, and the degenerate states
are the pseudoscalar (J = 0) and vector (J = 1) mesons. Their masses are split by
hyperfine corrections of order 1/mQ, such that one expects mB∗ −mB = O(1/mb) and

mD∗ − mD = O(1/mc). It follows that m2
B∗ −m2

B ≃ m2
D∗ −m2

D ≃ const. The data

are compatible with this result: m2
B∗ −m2

B ≃ 0.49GeV2 and m2
D∗ −m2

D ≃ 0.55GeV2.
One can also study excited meson states, in which the light constituents carry orbital
angular momentum. For example, it is tempting to interpret D1(2420) with JP = 1+

and D2(2460) with JP = 2+ as the spin doublet corresponding to j = 3/2. The small
mass difference mD∗

2
−mD1

≃ 35MeV supports this assertion. A typical prediction of the

flavor symmetry is that the excitation energies for states with different quantum numbers
of the light degrees of freedom are approximately the same in the charm and bottom
systems. This explains, for example, why the splittings mBS

−mB = 89 ± 5MeV and
mDs −mD ≃ 100MeV are very close to each other.

1.2.3. Weak decay form factors: Of particular interest are the relations between the
weak decay form factors of heavy mesons, which parametrize hadronic matrix elements of
currents between two meson states containing a heavy quark. These relations have been
derived by Isgur and Wise [9], generalizing ideas developed by Nussinov and Wetzel [11]
and Voloshin and Shifman [12]. For the purpose of this discussion, it is convenient to
work with a mass-independent normalization of meson states. In fact, it is more natural
for heavy quark systems to use velocity rather than momentum variables. We will thus
write |M(v)〉 instead of |M(p)〉.

Consider the elastic scattering of a pseudoscalar meson, P (v) → P (v′), induced by an
external vector current coupled to the heavy quark contained in P . Before the action of
the current, the light degrees of freedom in the initial state orbit around the heavy quark,
which acts as a source of color moving with the meson’s velocity v. The action of the
current is to replace instantaneously the color source by one moving at velocity v′. If
v = v′, nothing really happens; the light degrees of freedom do not realize that there was a
current acting on the heavy quark. If the velocities are different, however, they suddenly
find themselves interacting with a moving color source. Soft gluons have to be exchanged
in order to rearrange the light degrees of freedom and build the final state meson moving
at velocity v′. This rearrangement leads to a form factor suppression, which reflects the
fact that as the velocities become more and more different, the probability for an elastic
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1. Heavy Quark and Soft Collinear Effective Theory 5

transition decreases. The important observation is that, in the mQ → ∞ limit, the form
factor can only depend on the Lorentz boost γ = v · v′ connecting the rest frames of the
initial and final-state mesons.

The result of this discussion is that in the effective theory, which provides the
appropriate framework to consider the limit mQ → ∞ with the quark velocities kept
fixed, the hadronic matrix element describing the scattering process can be written as

〈P
(

v′
)

| h̄v′γµhv |P (v)〉 = ξ
(

v · v′
) (

v + v′
)µ

, (1.7)

with a form factor ξ(v · v′) that does not depend on mQ. Since the matrix element is
invariant under complex conjugation combined with an interchange of v and v′, the
function ξ(v · v′) must be real. That there is no term proportional to (v− v′)µ can be seen
by contracting the matrix element with (v − v′)µ, and using /vhv = hv and h̄v′/v

′ = h̄v′ .
One can now use the flavor symmetry to replace the heavy quark Q in one of the
meson states by a heavy quark Q′ of a different flavor, thereby turning P into another
pseudoscalar meson P ′. At the same time, the current becomes a flavor-changing vector
current. In the infinite mass limit this is a symmetry transformation, under which the
effective Lagrangian is invariant. Hence, the matrix element

〈P ′
(

v′
)

| h̄′v′γ
µhv |P (v)〉 = ξ

(

v · v′
) (

v + v′
)µ

(1.8)

is still determined by the same function ξ(v · v′). This universal form factor is called the
Isgur-Wise function [9].

For equal velocities, the vector current Jµ = h̄′vγ
µhv = h̄′vv

µhv is conserved in
the effective theory, irrespective of the flavor of the heavy quarks. The corresponding
conserved charges are the generators of the flavor symmetry. The diagonal generators
simply count the number of heavy quarks, whereas the off-diagonal ones replace a heavy
quark by another. It follows that the Isgur-Wise function is normalized at the point of
equal velocities: ξ(1) = 1. This can easily be understood in terms of the physical picture
discussed above: When there is no velocity change, the light degrees of freedom see the
same color field and are in an identical configuration before and after the action of the
current. There is no form factor suppression. Since Erecoil = mP ′ (v · v′ − 1) is the recoil
energy of the daughter meson P ′ in the rest frame of the parent meson P , the point
v · v′ = 1 is referred to as the zero recoil limit.

The heavy-quark spin symmetry leads to additional relations among weak decay
form factors. It can be used to relate matrix elements involving vector mesons to those
involving pseudoscalar mesons. They can be written as [9]

〈V ′
(

v′, ǫ
)

| h̄′v′γ
µ (1− γ5) hv |P (v)〉 = iǫµναβ ǫ∗ν v

′
αvβ ξ

(

v · v′
)

−
[

ǫ∗µ
(

v · v′ + 1
)

− v′µ ǫ∗ · v
]

ξ
(

v · v′
)

.
(1.9)

Once again, the matrix element is completely described in terms of the universal
Isgur-Wise form factor. Eq. (1.8) and Eq. (1.9) summarize the relations imposed by
heavy-quark symmetry on the weak decay form factors describing the semileptonic
decay processes B → D ℓ ν̄ and B → D∗ℓ ν̄. These relations are model-independent
consequences of QCD in the limit where mb, mc ≫ ΛQCD. They play a crucial role in the
determination of |Vcb|.
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6 1. Heavy Quark and Soft Collinear Effective Theory

1.2.4. Residual gauge invariance and decoupling transformation: The effective
Lagrangian LHQET defines an effective theory for soft interactions of heavy quarks. All
hard interactions, including the couplings of heavy quarks to hard gluons, are integrated
out. As a result, the effective theory no longer has the full gauge invariance of QCD,
but only a residual gauge invariance with respect to gauge transformations that preserve
the scaling properties of the fields. These are called “soft gauge transformations” and
denoted by Us(x). The transformation rules are

hv (x) → Us (x) hv (x) ,

Aµ
s (x) → Us (x) A

µ
s (x) U

†
s (x) +

i

gs
Us (x)

[

∂µ, U†
s (x)

]

.
(1.10)

Operationally, “soft” functions like A
µ
s (x) and Us(x) can be defined via a restriction to

soft modes in their Fourier decomposition. In practice, however, the use of dimensional
regularization makes it unnecessary to introduce the hard cutoffs associated with this
construction.

The couplings of soft gluons to heavy quarks can be “removed” by the field redefinition

hv(x) = Yv(x) h
(0)
v (x), with

Yv (x) = P exp

(

igs

∫ 0

−∞
dt v ·As (x+ tv)

)

(1.11)

a time-like Wilson line extending from minus infinity to the point x. The symbol P means
an ordering with respect to t such that gauge fields are ordered from left to right in the

order of decreasing t values. The Wilson line Y
†
v (x) is given by a similar expression but

with the opposite ordering prescription, and with igs replaced by −igs in the exponent.

The soft Wilson line obeys the important property Y
†
v iv · Ds Yv = iv · ∂. Using this

relation, it follows that in terms of the new fields the HQET Lagrangian becomes

LHQET = h̄
(0)
v iv · ∂ h(0)v +O

(

1/mQ

)

. (1.12)

At leading order in 1/mQ, this is a free theory as far as the strong interactions of heavy
quarks are concerned. However, the theory is nevertheless non-trivial in the presence of
external sources. Consider, e.g., the case of a flavor-changing weak-interaction current,
which turns a heavy b-quark into a c-quark (plus a W boson). At tree level, matching
such a current onto HQET gives

c̄γµ (1− γ5) b→ h̄v′γ
µ (1− γ5) hv = h̄

(0)
v′
γµ (1− γ5)

(

Y
†

v′
Yv

)

h
(0)
v . (1.13)

Here v and v′ are the velocities of the heavy mesons containing the heavy quarks.

Unless the two velocities are equal, the object Y
†

v′
Yv is non-trivial, and hence the soft

gluons do not decouple from the heavy quarks inside the current operator. Indeed, the
gauge-invariant object

ξ
(

v · v′
)

=
1

Nc
Tr

(

Y
†

v′
Yv

)

(1.14)
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1. Heavy Quark and Soft Collinear Effective Theory 7

is nothing but the Isgur-Wise function introduced in Eq. (1.7). If we close the integration

contour at t = −∞, we may interpret Y
†

v′
Yv as a Wilson loop with a cusp at the

point x, where the two paths parallel to the different velocity vectors intersect. The
presence of the cusp leads to non-trivial UV behavior (for v 6= v′), which is described
by a cusp anomalous dimension Γc(v · v′), which was calculated at two-loop order as
early as in 1987 [13]. The cusp anomalous dimension is nothing but the celebrated
velocity-dependent anomalous dimension of heavy-quark currents, which was rediscovered
three years later in the context of HQET [14].

The interpretation of heavy quarks as Wilson lines is very useful, and it was put
forward in some of the very first papers on the subject [15]. This technology will be
useful in the study of the interactions of heavy quarks with collinear degrees of freedom,
which will be discussed in the context of SCET.

1.2.5. Model-independent determination of |Vcb|: The known normalization of the
Isgur-Wise function at zero recoil can be used to obtain a model-independent measurement
of the element |Vcb| of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. The semileptonic
decay B → D∗ℓ ν̄ is ideally suited for this purpose [16]. Experimentally, this is a
particularly clean mode, since the reconstruction of the D∗ meson mass provides a
powerful rejection against background. From the theoretical point of view, it is ideal
since the decay rate at zero recoil is protected by Luke’s theorem against first-order power
corrections in 1/mQ [17]. Introducing the recoil variable w = v · v′, one finds

lim
w→1

1√
w2 − 1

dΓ
(

B̄ → D∗ℓ ν̄
)

dw
=
G2
F |Vcb|2
4π3

(mB −mD∗)2 m3
D∗ |hA1

(1) |2 , (1.15)

where the form factor hA1
(1) equals 1 up to calculable short-distance corrections and

second-order power corrections ∼ 1/m2
Q. In practice, one has to rely on an extrapolation

over some range in w to obtain a measurement of |Vcb|. The shape of the form factor near
w = 1 is highly constrained by unitarity and analyticity considerations [18,19].

1.2.6. Heavy-quark expansion for inclusive decays: The theoretical description
of inclusive decays of hadrons containing a heavy quark exploits two observa-
tions [20,21,22,23,24,25,26]: bound-state effects related to the initial state can be
calculated using the heavy-quark expansion, and the fact that the final state consists of a
sum over many hadronic channels eliminates the sensitivity to the properties of individual
final-state hadrons. The second feature rests on the hypothesis of quark-hadron duality,
i.e. the assumption that decay rates are calculable in QCD after a smearing procedure
has been applied [27]. In semileptonic decays, the integration over the lepton spectrum
provides a smearing over the invariant hadronic mass of the final state (global duality).
For nonleptonic decays, where the total hadronic mass is fixed, the summation over many
hadronic final states provides an averaging (local duality). At present, quark-hadron
duality cannot be derived from first principles. The validity of global duality (at energies
even lower than those relevant in B decays) has been tested experimentally using
high-precision data on semileptonic B decays and on hadronic τ decays.
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8 1. Heavy Quark and Soft Collinear Effective Theory

Using the optical theorem, the inclusive decay width of a hadron Hb containing a b
quark can be written in the form

Γ (Hb → X) =
1

MHb

Im 〈Hb|T |Hb〉 , (1.16)

where the transition operator T is given by a correlation function of two effective weak
Hamiltonians:

T = i

∫

d4xT{Heff (x) ,Heff (0)} . (1.17)

The effective weak Hamiltonian for b-quark decays consists of dimension-6 four-fermion
operators and dipole operators [28]. It follows that the leading contributions to the
inclusive decay rate in Eq. (1.16) arise from two-loop diagrams. Because of the large
mass of the b quark, the momenta flowing through the internal propagators are large.
It is thus possible to construct an operator-product expansion (OPE) for the transition
operator, in which it is represented as a series of local operators containing two b-quark
fields. The operator with the lowest dimension is b̄b. The only gauge-invariant operator
with dimension 4 is b̄ i /D b; however, the equations of motion imply that this operator can
be replaced by mbb̄b. The first operator that is different from b̄b has dimension 5 and
contains the gluon field. It arises from diagrams in which a soft gluon is emitted from one
of the internal lines of the two-loop diagrams. From dimension 6 on, an increasing number
of operators appears. For dimensional reasons, the matrix elements of higher-dimensional
operators are suppressed by inverse powers of the b-quark mass. Thus, the total inclusive
decay rate of a hadron Hb can be written as [21,22]

Γ(Hb) =
G2
Fm

5
b |Vcb|2

192π3

{

c3 〈b̄b〉+ c5
〈b̄ gsσµνGµνb〉

m2
b

+
∑

n

c
(n)
6

〈O(n)
6 〉
m3

b

+ . . .

}

, (1.18)

where the prefactor arises from the loop integrations, ci are calculable coefficient
functions, and 〈O〉 are the (normalized) forward matrix elements between Hb states.
These matrix elements can be systematically expanded in powers of 1/mb using the
heavy-quark effective theory (HQET) [6,29]. The result is [21,22]

〈b̄b〉 = 1− µ2π (Hb)− µ2G (Hb)

2m2
b

+O
(

1/m3
b

)

,

〈b̄ gsσµνGµνb〉
m2

b

=
2µ2G (Hb)

m2
b

+O
(

1/m3
b

)

,

(1.19)

where µ2π(Hb) and µ
2
G(Hb) are the matrix elements of the heavy-quark kinetic energy and

chromomagnetic interaction inside the hadron Hb, respectively [30]. For the ground-state
heavy mesons and baryons, the latter ones can be extracted from spectroscopy, e.g.
µ2G(B) = 3(m2

B∗ −m2
B)/4 ≃ 0.36GeV2 and µ2G(Λb) = 0.

A formula analogous to Eq. (1.18) can be derived for differential distributions in
inclusive decay processes, assuming that these distributions are integrated over sufficiently
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1. Heavy Quark and Soft Collinear Effective Theory 9

large portions of phase space (or smeared in an appropriate way) to ensure quark-hadron
duality. Important examples are the distributions in lepton energy (dΓ/dEℓ) or lepton
invariant mass (dΓ/dq2), as well as moments of the invariant hadronic mass distribution,
in the semileptonic processes B̄ → Xu ℓ ν̄ and B̄ → Xc ℓ ν̄, as well as the photon energy
spectrum (dΓ/dEγ) in the radiative process B̄ → Xsγ. While the latter process is
primarily used to test the Standard Model and search for hints of new physics, an
analysis of decay distributions in the semileptonic processes can be employed to perform
a global fit determining the CKM matrix elements |Vub| and |Vcb| along with heavy-quark
parameters such as the quark masses mb and mc as well as the hadronic parameters
µ2π(B), µ2G(B), etc. These determinations provide some of the most accurate values for

these parameters [31,32]. For many of these distributions 1/m3
b corrections [?] and even

higher-order terms are known.

1.2.7. Shape functions and non-local power corrections: In certain regions of
phase space, in which the hadronic final state in an inclusive heavy hadron decay
is made up of light energetic partons, the local OPE for inclusive decays described
above must be replaced by a more complicated expansion involving hadronic matrix
elements of non-local light-ray operators. Prominent examples are the radiative decay
B̄ → Xsγ for large photon energy Eγ near mB/2 (such that the invariant hadronic mass
m2

Xs
= mB(mB − 2Eγ) of the final state is of order mBΛQCD), and the semileptonic

decay B̄ → Xu ℓ ν̄ at large lepton energy or small hadronic invariant mass. In these
cases, the differential decay rates at leading order in the heavy-quark expansion can be
written in the factorized form dΓ ∝ H J ⊗ S [33,34], where the hard function H and the
jet function J are calculable in perturbation theory. The characteristic scales for these
functions are set by mb and (mbΛQCD)

1/2, respectively. The soft function

S (ω) =

∫

dt

4π
e−iωt 〈B̄(v) | h̄v(tn) Yn(tn) Y †

n (0)hv(0) |B̄ (v)〉 (1.20)

is a genuinely non-perturbative object, also called a shape function [25]. Here Yn
are soft Wilson lines along a light-like direction n aligned with the momentum of the
hadronic final-state jet. The jet function and the shape function share a common variable
ω ∼ ΛQCD, and the symbol ⊗ denotes a convolution in this variable. The leading shape
function is process independent and describes radiative as well as semileptonic decays.

In higher orders of the heavy-quark expansion, an increasing number of subleading
jet and soft functions is required to describe the decay distributions. These have been
analyzed in detail at order 1/mb [35,36,37,38,39,40]. The technology for deriving the
corresponding factorization theorems relies on SCET and will be discussed in more detail
below. An interesting effect arising for B̄ → Xsγ decay is that some of the non-local
1/mb corrections remain even in the calculation of the total decay rate, since due to the
hadronic substructure of the photon this process is not really inclusive in QCD. This leads
to an irreducible theoretical uncertainty in the calculation of the B̄ → Xsγ branching
ratio and CP asymmetry, whose magnitudes are difficult to estimate [41].
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10 1. Heavy Quark and Soft Collinear Effective Theory

1.3. Soft-collinear Effective Theory

1.3.1. General idea of expansion: As discussed in the previous section, soft gluons
that bind a heavy quark inside a heavy meson can not change the virtuality of that heavy
quark by a significant amount. The ratio of ΛQCD/mQ provided the expansion parameter
in HQET, which is a small parameter since mQ ≫ ΛQCD.

This obviously does not work when considering light quarks, unless the energy Q of the
quarks is large. In this case, the ratio ΛQCD/Q provides a small parameter which can be
used to construct an effective theory. In fact, the first attempt to construct the relevant
effective theory followed exactly the same steps as HQET, and the resulting theory
was called large-energy effective theory [42]. However, this theory lacked one crucial
ingredient, which meant that it did not in fact correctly reproduce the long-distance
physics of full QCD. The lacking ingredient was that light energetic quarks can not only
emit soft gluons, but they can also emit collinear gluons (an energetic gluon in the same
direction as the original quark), without changing its virtuality. Thus, to fully reproduce
the long distance physics of energetic quarks requires their interactions with both soft and
collinear particles. The resulting effective theory is therefore called soft-collinear effective
theory (SCET) [43,44,45,46].

To be more precise, consider a quark with energy Q and virtuality m ≪ Q, moving
along the direction ~n. It is convenient to parameterize the momentum pn of this particle
in terms of its light-cone components, defined by

(

p−n , p
+
n , p

⊥
n

)

=
(

n̄ · pn, n · pn, p⊥n
)

, (1.21)

where nµ = (1, ~n) and n̄µ = (1,−~n) are light-like 4-vectors, and n · p⊥ = n̄ · p⊥ = 0. Note
that we have added a subscript n on the momentum to identify it as a collinear particle in
direction n (more precisely, a particle with energy much larger than its virtuality moving
along a direction ~n). In terms of these light-cone components, the virtuality satisfies
m2 = p+n p

−
n + p⊥2

n . The individual components of the momentum satisfy

(

p−n , p
+
n , p

⊥
n

)

∼
(

Q,m2/Q,m
)

≡ Q
(

1, λ2, λ
)

, (1.22)

where λ = m/Q is the expansion parameter of SCET.

If such an energetic particle interacts with a soft particle with momentum scaling as

(

p−s , p
+
s , p

⊥
s

)

∼ Q
(

λ2, λ2, λ2
)

, (1.23)

the resulting momentum pc + ps ∼ Q(1, λ2, λ) remains unchanged. It is also obvious that
after interacting with another collinear particle in the same direction with momentum
qn, the resulting momentum pn + qn still has the same scaling, and therefore the same
virtuality. Thus, in physical situations where we are interested in energetic objects with
small virtualities compared to their energy, it is the interactions of collinear and soft
degrees of freedom that give rise to the long-distance physics. SCET, which is constructed
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1. Heavy Quark and Soft Collinear Effective Theory 11

to reproduce this long-distance dynamics, is therefore an effective theory describing the
interactions of collinear and soft particles.

Note that the above power counting has the soft momentum to be of order m2/Q,
where m denotes the mass of a collinear system. If the mass of the collinear system is
of order ΛQCD, as would be the case for a single energetic hadron, this power counting
becomes no longer viable, since ΛQCD provides a natural cutoff to QCD and the soft
momentum cannot be below this scale. To describe such systems requires a modified
version of SCET, called SCETII [47], in which the scaling of the soft modes is Q(λ, λ, λ).
In this review we will focus only on SCET with scaling discussed before, which is
sometimes called SCETI. A discussion of some of the issues that arise in SCETII can be
found in [47,48,49,50].

1.3.2. Leading-order Lagrangian: The derivation of the SCET Lagrangian follows
similar steps as the derivation of the HQET Lagrangian in Section 1.2.1, but care has to
be taken to properly account for the interactions of collinear fields with one another. We
begin by deriving the Lagrangian for a theory containing only a single type of collinear
degrees of freedom and start from the full QCD Lagragian for a massless fermion

Ln = q̄n (x) iD/ n qn (x) . (1.24)

We are interested in the interactions of fermion fields qn(x) with gluon fields An(x), which
have collinear momentum in the same light-like direction n. Defining two projection
operators

Pn =
n/n̄/

4
, Pn̄ =

n̄/n/

4
, (1.25)

which satisfy Pn + Pn̄ = 1, we can write

qn (x) = (Pn + Pn̄) qn (x) ≡ ψn (x) +Ξn (x) . (1.26)

In terms of these two fields, the Lagrangian becomes

Ln = ψ̄n (x)
n̄/

2
in ·Dn ψn (x) + Ξ̄n (x)

n/

2
in̄ ·DnΞn (x)

+ ψ̄n (x) iD/
⊥
n Ξn (x) + Ξ̄n (x) iD/

⊥
n ψn (x) .

(1.27)

From the power counting we know that n̄ · pn ≫ 1, such that the field Ξn(x) has no pole
in its propagator, similar to the field Hv(x) in Eq. (1.3). It can therefore be integrated
out using its equations of motion

n/

2
in̄ ·DnΞn (x) = iD/⊥

n ψn (x) . (1.28)

Inserting this back into Eq. (1.27), we find

Ln = ψ̄n (x)

[

in ·Dn + iD/⊥
n

1

in̄ ·Dn
iD/⊥

n

]

n̄/

2
ψn (x) . (1.29)
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12 1. Heavy Quark and Soft Collinear Effective Theory

While this Lagrangian leads to the correct Feynman rules of SCET, there is one
feature that warrants extra discussion. In contrast to the Lagrangian of HQET given in
Eq. (1.5), where the derivative scales like the residual momentum k of the heavy quark,
the derivatives in Eq. (1.29) pick up both the large momentum components of order
Q and Qλ, and the residual momentum of order Qλ2. One can separate the large and
residual momentum components using a procedure similar to the HQET case. Separating
the collinear momentum into a “label” and a residual component, pµ = Pµ + kµ, and
performing a phase redefinition on the collinear fields ψn(x) = eiP ·x ξn(x), derivatives
acting on the fields ξn(x) now only pick out the residual momentum

∂µξn (x) = kµξn (x) . (1.30)

Since the label momentum in SCET is not conserved as in HQET, one defines a label
operatorPµ acting as Pµξn(x) = Pµξn(x) [45], as well as a corresponding covariant
label operator Dµ

n = Pµ + igAn(x). Using this notation, the Lagrangian of SCET can be
written as

Ln = ξ̄n (x)

[

in ·Dn + iD/⊥
n

1

in̄ · Dn
iD/⊥

n

]

n̄/

2
ξn (x) . (1.31)

While Eq. (1.31) looks very similar to Eq. (1.29), the second term in the Lagrangian only
depends on label operators, and not any more on derivatives. This shows that the inverse
dependence on n̄ · Dn does not introduce any long-distance non-locality into SCET.

An alternative way to understand the separation between large and small momentum
components is to derive the Lagrangian of SCET in position space. In this case no
label operators are required to describe interactions in SCET, and the dependence on
short-distance effects is contained in non-localities at short distances. For more details on
this alternative formulation of SCET, see [51,52,53,54].

The final step to complete the Lagrangian of SCET is to include the interactions of
collinear fields with soft fields. These interactions can be included by adding the soft
gluons to the covariant derivatives, while preserving the power counting. This leads to
the final SCET Lagrangian

Ln = ξ̄n (x)

[

in ·Dn + gn ·As + iD/⊥
n

1

in̄ · Dn
iD/⊥

n

]

n̄/

2
ξn (x) . (1.32)

The leading-order Lagrangian describing collinear fields in different light-like directions is
simply given by the sum of the Lagrangians for each direction n separately, i.e.

L =
∑

n

Ln (1.33)

The soft gluons are the same in each individual Lagrangian. For details on subleading
correction in λ to SCET, see [47,51,52,55,56,57].
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1. Heavy Quark and Soft Collinear Effective Theory 13

1.3.3. Collinear gauge invariance and Wilson lines: As in the case of HQET
described in Section 1.2.4, SCET only contains residual gauge symmetries. One satisfies
collinear scaling

(

n̄ · ∂n, n · ∂n, ∂⊥n
)

Un (x) ∼ Q
(

1, λ2, λ
)

Un (x) , (1.34)

and one soft scaling

(

n̄ · ∂n, n · ∂n, ∂⊥n
)

Us (x) ∼ Q
(

λ2, λ2, λ2
)

Us (x) . (1.35)

The fact that collinear fields in different directions do not transform under the same
gauge transformations implies that each collinear sector, containing particles with large
momenta along a certain direction, is separately gauge invariant. This is achieved by the
introduction of collinear Wilson lines [45]

Wn (x) = P exp

[

−ig
∫ 0

−∞
ds n̄ ·An (sn̄+ x)

]

, (1.36)

which transform under collinear gauge transformations according to

Wn (x) → Un (x)Wn (x) . (1.37)

Thus, the combination
χn (x) ≡W †

n (x)ψn (x) (1.38)

is gauge invariant. Operators in SCET are typically constructed from such gauge-invariant
collinear fields.

1.3.4. Decoupling of soft gluons: Soft gluons in SCET couple to collinear quarks

only through the term ξ̄n gn · As
n̄/

2
ξn in the effective Lagrangian in Eq. (1.32). This

coupling is very similar to the coupling of soft gluons to heavy quarks in HQET, and soft
gluons in SCET can be decoupled from collinear fields in a way similar as explained in
Section 1.2.4. Written in terms of the redefined fields

ψn (x) = Yn (x)ψ
(0)
n (x) , An (x) = Yn (x)A

(0)
n (x)Y †

n (x) , (1.39)

the soft gluons decouple from the SCET Lagrangian [46]. This fact greatly facilitates
proofs of factorization theorems in SCET.
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14 1. Heavy Quark and Soft Collinear Effective Theory

1.3.5. Factorization Theorems: One of the important applications of SCET
is to understand how to factorize cross sections involving energetic particles in
different directions into simpler pieces that can either be calculated perturbatively
or be determined from data. Factorization theorems have been around for much
longer than SCET [58,59,60,61,62,63,64,65], and for reviews on the subject,
see [66,67,68]. The effective theory allows for a conceptually simpler understanding of
factorization [69,70,71,72,73,74], since most simplifications happen already at the level
of the Lagrangian.

As discussed in the previous section, the Lagrangian of SCET does not involve any
couplings between collinear degrees of freedom in different light-like directions, or between
soft and collinear degrees of freedom after the field redefinition Eq. (1.39) has been
performed. An operator describing the scattering and production of collinear partons at
short distances can thus be written as

〈O (x)〉 ≃ CO (µ)
〈

C(0)na (x) C(0)nb (x) C(0)n1 (x) . . .C(0)nN (x)
[

YnaYnbYn1 . . .YnN

]

(x)
〉

µ
.

(1.40)
Here Cn(x) denotes a gauge-invariant combination of collinear fields (either quark or gluon
fields) in the direction n and the matching coefficient is denoted by CO. The soft Wilson
lines can either be in a color triplet or color octet representation, and are collectively
denoted by Yn. Note that both the matrix elements and the coefficient CO depend on
the renormalization scale µ.

Having defined the operator mediating a given process, one can calculate the cross
section by squaring the operator, taking the forward matrix element and integrating over
the phase space of all final-state particles,

dσ ∼
〈

in
∣

∣

∣
O (x)O† (0)

∣

∣

∣
in
〉

dΦ , (1.41)

where dΦ denotes the phase space integration over the final-state particles as well as over
the momentum fractions of the incoming partons,

dΦ ≡ dxadxb
∏

i

d3pi

(2π)3 2Ei

δ4 (pin − pout) . (1.42)

The absence of interactions between collinear degrees of freedom moving along different
directions or soft degrees of freedom implies that the forward matrix element can be
factorized as

〈

in
∣

∣

∣
O (x)O† (0)

∣

∣

∣
in
〉

=
〈

ina

∣

∣

∣
Cna (x) C†na (0)

∣

∣

∣
ina

〉〈

inb

∣

∣

∣
Cnb (x) C

†
nb

(0)
∣

∣

∣
inb

〉

×
〈

0
∣

∣

∣
Cn1 (x) C†n1 (0)

∣

∣

∣
0
〉

· · ·
〈

0
∣

∣

∣
CnN (x) C†nN (0)

∣

∣

∣
0
〉

×
〈

0
∣

∣

∣

[

Yna . . .YnN

]

(x)
[

Yna . . .YnN

]†
(0)

∣

∣

∣
0
〉

.

(1.43)

Thus, the matrix element required for the differential cross section has factorized into a
product of simpler structures, each of which can be evaluated separately.
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1. Heavy Quark and Soft Collinear Effective Theory 15

The matrix elements of incoming collinear fields are non-perturbative objects given
in terms of the well-known parton distribution functions, while the matrix elements of
outgoing collinear fields are determined by perturbatively calculable jet functions. Finally,
the vacuum matrix element of the soft Wilson lines defines a so-called soft function. The
common dependence on x implies that in momentum space the various components of the
factorization theorem are convoluted with one another. Deriving this convolution requires
a careful treatment of the phase-space integration, in particular treating the large and
residual components of each momentum appropriately. While this is a straightforward
exercise, the details will be omitted here (see [52,74]) .

Putting all information together, the differential cross section can be written as

dσ ∼ H (µ)⊗
[

fp1/P (µ) fp2/P (µ)
]

⊗ [J1 (µ) . . . JN (µ)]⊗ S (µ) . (1.44)

Here the hard coefficient H(µ) is equal to the square of the matching coefficient
H(µ) = |CO(µ)|2. It should be mentioned that the most difficult part of traditional
factorization proofs involves showing that so-called Glauber gluons do not spoil the above
factorization theorem. So far, Glauber gluons are not included in the SCET derivations of
factorization theorems, but preliminary work on understanding Glauber gluons in SCET
exists [75].

1.3.6. Resummation of large logarithms: SCET can be used to sum the large
logarithmic terms that arise in perturbative calculations. In general, perturbation theory
will generate a logarithmic dependence on any ratio of scales in a problem, and for
processes that involve initial or final states with energy much in excess of their mass there
are two powers of logarithms for every power of the strong coupling constant. Thus, for
widely separated scales these large logarithms can spoil fixed-order perturbation theory,
and a much better convergence is achieved by expanding in αs, but holding αs log

2(r)
fixed, such the first term in the new expansion resumms powers of αs log

2(r) to all orders.
To be more precise, a proper resumption requires to sum logarithms of the form αns logm

in the exponent in the logarithm of a cross-section.

The important ingredient in achieving this resumption is the fact that SCET factorizes
a given cross section into simpler pieces, as discussed in the previous section. Each of
the ingredients of the factorization theorem depends on a single physical scale, and
the only dependence on that scale can arise through logarithms of its ratio with the
renormalization scale µ. Thus, for each of the components in the factorization theorem
one can choose a renormalization scale µ for which the large logarithmic terms are absent.

Of course, the factorization formula requires a common renormalization scale µ in all
its components, and one therefore has to use the renormalization group (RG) to evolve
the various component functions from their preferred scale to the common scale µ. For
example, for the hard coefficient H(µ), the RG equation can be written as

µ
d

dµ
H (µ) = γH (Q, µ)H (µ) . (1.45)

In general, the anomalous dimension is of the form γH(µ) = cH Γcusp(αs) log(Q/µ)+γ(αs),
where cH is a process-dependent coefficient and Γcusp denotes the so-called cusp anomalous
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16 1. Heavy Quark and Soft Collinear Effective Theory

dimension [13,76]. The non-cusp part of the anomalous dimension γ is again process
dependent. The presence of a logarithm of the hard scale Q in the anomalous dimension
is characteristic of Sudakov problems and arises since the perturbative series contains
double logarithms of scale ratios. The anomalous dimension γH is known at two-
loop order for arbitrary n-parton amplitudes containing massless or massive external
partons [77,78,79,80]. Solving the RG equation yields

H (µ) = UH

(

µ,µh
)

H (µh) , (1.46)

which can be used to write the hard function at a scale µh ∼ Q, where its perturbative
expression does not contain any large logarithms, in terms of the common renormalization
scale µ. The RG evolution factor UH(µ,µh) sums logarithms of the form µ/µh. By
calculating the anomalous dimension γH(µ) to higher and higher orders in perturbation
theory, one can resum more and more logarithms in the evolution kernel. The RG
equations for the jet and soft functions (as well as for the parton distribution functions)
are more complicated, since they involve convolutions over the relevant momentum
variables. This will not be discussed in detail here, but for more details, see [44,81,82,83].

1.3.7. Applications: SCET has many applications. Most of these are either in flavor
physics, where the decay of a heavy B meson can give rise to energetic light partons, or in
collider physics, where the presence of jets naturally leads to collimated sets of energetic
particles.

As already mentioned in Section 1.3.1, applications in flavor physics which involve
exclusive B-meson decays into light, energetic mesons require SCETII [84,85,86], which
is beyond the scope of this review. However, SCET has been successfully applied to
the decays B → Xsγ and B → Xuℓν decay, as was already discussed in Section 1.2.7.
Following the steps outlined in Section 1.3.5, SCET factorization theorems have been
proven, which for both decays take the symbolic form

dσ ∼ H (µ)J (µ)⊗ S (µ) . (1.47)

While the hard function is different for the two decays, the jet and soft functions are
identical at leading order in ΛQCD/mQ. This is particularly important for the soft
function, given by the matrix element in Eq. (1.20) (where Yn Wilson lines in HQET
are identical to the Yn Wilson lines in SCET). It is this shape function that introduces
non-perturbative physics into the theoretical predictions for the cross sections of B → Xsγ
and B → Xuℓν in the regions of experimental interest. The fact that both decays depend
on the same non-perturbative function has allowed to determine this non-perturbative
information from the measured shape of the photon spectrum in B → Xsγ, allowing for a
better understanding of the process used to determine the CKM element |Vub|.

Another important application of SCET is its use to obtain precision calculations for
event-shape distributions at e+e− colliders. Such observables, in particular the thrust
distribution, have been measured to high accuracy at LEP (for a review, see [87]) .
Comparing these data to precise theoretical predictions allows for a determination of the
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1. Heavy Quark and Soft Collinear Effective Theory 17

strong coupling constant αs. For small values of thrust (τ ≪ 1), the distribution can be
factorized into the form [88,89,90]

1

Qσ0

dσ

dτ
= H (µ)

∫

ds

∫

dk J (s, µ) S (Qτ − s/Q− k, µ) . (1.48)

Here Q denotes the center-of-mass energy of the collision, σ0 is the total hadronic
cross section, and H, J and S are the hard, jet and soft functions in SCET. Large
logarithms of the form (αns ln2n−1 τ)/τ become important and have to be resummed.
Furthermore, for τ ∼ ΛQCD/Q non-perturbative effects in the soft function become
important. SCET allows to include both the resummation of large logarithmic terms
as well as the non-perturbative physics through a shape function [91], very similar
to the B-physics case discussed above. The known perturbative effects for large values
of τ can be included by matching the SCET result to the known two-loop spectrum.
SCET has also been applied to study more complicated event shapes, for which all-order
factorization theorems were not available before. An example is the jet broadening, for
which the factorization theorem is affected by the so-called collinear anomaly [92].

A final application worth mentioning is that of soft-gluon (or threshold) resummation
at hadron colliders. When producing a given final state close to threshold, extra radiation
is restricted to be soft, since there is not enough energy available for hard emissions. This
gives rise to large double-logarithmic corrections in the perturbative expansion, which
can be resummed. A prominent example is the Drell-Yan process, when the invariant
mass m of the lepton pair is approaching the partonic center-of-mass energy

√
ŝ. In this

case, the large logarithms are of the form log(1 − m2/ŝ), and their resummation was
studied in [93,94]. The resummation of these logarithms in SET using the techniques
mentioned in Section 1.3.6 has been performed in [95]. The same approach has also been
applied to closely related processes such as Higgs and top-quark pair production [99,100].
The fact that at a hadron collider one needs to integrate over all possible values of
the partonic center-of-mass energy implies that, for a given value of m, only in a small
portion of phase space the threshold logarithms are large. However, it has been argued
that threshold resummation is nevertheless phenomenologically important, because the
partonic threshold region is strongly enhanced due to the steepness of the parton
luminosities [95,96,97,98].

1.3.8. Open issues and perspectives: SCET is still a rapidly developing field, and
there are several open questions that need to be answered. In this review we have
not discussed any issues having to do with SCETII, which is the appropriate effective
theory describing interactions of collinear particles interacting with soft particles having
momentum scaling as Q(λ, λ, λ). This is important, for example to describe decays of B
mesons to light, energetic mesons, or in collider applications such as pT resummations.
There are still many open issues in how to properly formulate SCETII, which are under
active investigation. They include the treatment of endpoint singularities of convolution
integrals, double counting between overlapping momentum regions, and the breakdown of
the naive factorization of soft and collinear modes due to quantum effects. In the review
we have mentioned the issue of Glauber gluons in passing. Glauber gluons are known to
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18 1. Heavy Quark and Soft Collinear Effective Theory

affect factorization theorems, but how to properly include them in SCET is still an open
question.
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